Optimal and Adaptive Algorithms for Online Boosting Supplementary Material
ثبت نشده
چکیده
t=1 Xt ≤ 2 max { 2 √ σ, √ ln( 1δ ) }√ ln( 1δ ) = Õ( √ σ), by choosing δ 1 log2(T ) . This implies inequality (2). Inequality (3) is proved similarly. Note that these high probability bounds are conditioned on the internal randomness of WL. By taking an expectation of this conditional probability over the internal randomness of WL, we conclude that inequalities (2) and (3) hold with high probability unconditionally.
منابع مشابه
Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملOptimal and Adaptive Algorithms for Online Boosting
We study online boosting, the task of converting any weak online learner into a strong online learner. Based on a novel and natural definition of weak online learnability, we develop two online boosting algorithms. The first algorithm is an online version of boost-by-majority. By proving a matching lower bound, we show that this algorithm is essentially optimal in terms of the number of weak le...
متن کاملOnline multiclass boosting
Recent work has extended the theoretical analysis of boosting algorithms to multiclass problems and to online settings. However, the multiclass extension is in the batch setting and the online extensions only consider binary classification. We fill this gap in the literature by defining, and justifying, a weak learning condition for online multiclass boosting. This condition leads to an optimal...
متن کاملOnline Boosting Algorithms for Multi-label Ranking
We consider the multi-label ranking approach to multilabel learning. Boosting is a natural method for multilabel ranking as it aggregates weak predictions through majority votes, which can be directly used as scores to produce a ranking of the labels. We design online boosting algorithms with provable loss bounds for multi-label ranking. We show that our first algorithm is optimal in terms of t...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015